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Diffusion of Brownian particles in shear flows 
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The coupling of Brownian displacements and shear-induced convection of spherical 
colloidal particles in dilute suspensions is examined using solutions of appropriate 
convective diffusion equations for the time-dependent probability density and also 
by calculation of relevant statistical quantities for an ensemble of diffusing particles 
from Langerin equations. Based on a fundamental solution for convective diffusion 
from a point in a general linear field, analytical expressions for the probability density 
f@(r; t )  are given for the case of an arbitrary, two-dimensional linear flow field. The 
parameter a, which characterizes the flow, may range from - 1 (pure -rotation), 
through zero (simple shear), to + 1 (pure elongation). The Langevin approach offers 
interesting insights into the physical mechanism of diffusive-convective coupling, 
and may also be used to obtain rigorous expressions for moments of the probability 
density appropriate to a particle diffusing in an unbounded quadratic (Poiseuille) flow. 
Preliminary experiments are described which qualitatively verify the theoretical 
predictions for Poiseuille flow, and which suggest a simple, direct method for 
measuring particle diffusivities. Finally the effect of bounding walls on convective 
diffusion is considered by means of Monte Carlo calculations. Results show that 
particle-wall interactions significantly affect the average behaviour of particles 
located initially within distances of a few particle radii of the wall, since the frictional 
force is no longer isotropic. 

1. Introduction 
The importance of Brownian motion in a field of force derives both from its 

practical aspects, such as those involved in sedimentation (Chandrasekhar 1943), 
electrophoresis (Booth 1950), or coagulation (van de Ven & Mason 1977), and 
from its applicability to general problems such as the escape over potential barriers 
(Kramers 1940) and the diffusion theory of chemical reactions (Brinkman 1956). 
Investigation of Brownian motion in a field of force continues to be of considerable 
interest in, for example, polymer physics and colloid science, where, in dealing with 
solutions of macromolecules or colloidal suspensions, the particular field is often a, 
superposition of an external one (electromagnetic, gravitational) together with 
an internal one (shear, interparticle interaction). Such situations commonly arise 
in experiments designed to investigate rheo-optical (flow-birefringence) and rheo- 
electrical (Kerr) effects, as well as in certain separation techniques, such as ‘field- 
flow fractionation’ (Giddings 1966; Krishnamurthy & Subramanian 1977). I n  view 
of the importance assumed by internal shear fields in many of these systems, an 
understanding of the basic physical processes through which random motions of 
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suspended particles couple to the bulk shearing motion of the liquid is desirable. Our 
investigation here is confined specifically to the translational Brownian motion of 
isolated spherical colloidal particles in various velocity fields, although coupling of 
rotary Brownian motion and shear-induced rotation in suspensions of non-spherical 
particles is an equally important subject, with a variety of consequences as well 
(Vedas et a,!. 1976; Zuzovsky, Priel & Mason 1979; Leal & Hinch 1971). 

There are in general two approaches to the problem of Brownian motion (Chandra- 
sekhar 1943). The motion of a Brownian particle may either be described in terms of a 
Langevin equation together with statistical or correlation properties of the random 
force, or it may be described by a probability density in phase space wich satisfies a 
Fokker-Planck, or ‘diffusion ’ equation with given initial and boundary conditions. 
As Adelman (1976) has pointed out the equivalence of Langevin and Fokker-Planck 
approaches has been established only when the random force is assumed to have 
Gaussian-Markov character. With this assumption one may derive the Fokker-Planck 
equation by means of the Langevin equation. As is well known for times long com- 
pared to the relaxation of the velocity autocorrelation for the Brownian particle the 
Fokker-Planck equation reduces to the familiar phenomenological diffusion equation 
corresponding to Fick’s second law. This reduction constitutes the so-called ‘ diffusion 
limit ’ and will be our main concern in the calculations which follow. However, as we 
show, the dynamics of the Brownian particle in a velocity field over small time intervals 
(accessible only through a Langevin approach) offer interesting insights into the 
coupling of random Brownian and convective motions of the particle. For this reason 
we make use of both approaches. 

I n  Q 2 the problem of Brownian motion of spherical particles in general linear two- 
dimensional flows is examined by solving the convective diffusion equation. Aspects 
of diffusive-convective coupling are revealed in 3 3 by means of the Langevin equation 
for a spherical particle in simple shear. Section 4 treats Brownian motion in a non- 
linear (Poiseuille) flow first by means of Langevin equation, then, on the basis of 
moments of the probability distribution calculated by this approach, we construct 
series expansions of the probability valid near and far away from the point of maximum 
velocity in the flow profile. Finally in 0 5 we seek to answer some questions concerning 
the effect of bounding walls on the diffusion of colloidal particles by means of Monte 
Carlo calculations. Before proceeding we should re-emphasize that our calculations 
are for particles of colloidal rather than molecular dimension, so that quantitative 
predictions based on this theory are valid only for the former, even though we may in 
many circumstances expect qualitative agreement for the latter. 

2. Brownian motion in linear shear fields: solution of the convective 
diffusion equation 

The diffusion of a spherical colloidal particle in a linear shear field v(r; t )  is charac- 
terized, for times much greater than the relaxation of the velocity autocomelation, by a 
flux in probability space given by 

(2.1) 
which is the sum of a diffusive contribution - DVf, where D is the scalar diffusivity 
( = kBT/{ ,  5 being the Stokes’ frictional coefficient, k, Boltzmann’s constant and T the 

J(r; t )  = - DVf (r; t )  + v(r; t )  f (r; t ) ,  r(x, y, z ) ,  
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FIGURE 1. General two-dimensional linear flows characterized by the parameter a which 
can vary from - 1 (pure rotation) to + 1 (pure shear) (after Mason, 1976). 

absolute temperature) and a convective contribution vf. Here f (r; t )  is the probability 
density a t  r and t .  Since the probability must be conserved according to 

(2.2) 
the probability f (r; t )  obeys the convective diffusion equation 

(2.3) 

(2.4) with the initial condition 

and, since in this section we will be concerned with diffusion in an infinite medium, we 

(2.5) 
require that f vanish a t  infinity: 

lim (r; t )  = o. 
Obviously the liquid medium is assumed to be incompressible, hence (2.3) is in accord 
with the equation of continuity V .  v = 0. 

It is sufficient for our purposes here to deal with the general two-dimensional linear 
shear field v(r) which can be expressed in component form (Mason 1976; Kao, Cox & 
Mason 1977) as 

where G is the shear rate (a constant) and the parameter a may range from - 1 (pure 
rotation), through zero (simple shear), to + 1 (pure elongation). Figure 1 illustrates this 
general field in some of its possible forms. 

Now, as we show in appendix A, the solution of the convective diffusion equation (2.3) 
for arbitrary linear fields (a special case given by (2.6)] with the initial and boundary 
conditions (2.4) and (2.5) is the generalized Gaussian 

where det p is the determinant of the coefficients pij, with i, j = x, y. As explained in 
appendix A, the complete solution requires that we determine all of the second moments 
of the distribution (2.7), which are related to the inverse matrix @-'(t), i.e. 

where (rr) is the mean-squared displacement tensor and the angular brackets denote 
an ensemble average. 

af/at = - v.  J, 

af/at + (v. V ) f  = DVzf 

f (r; 0 )  = m, 

r+m 

v, = Gy, vv = aGx, (2.6) 

f (r; 4 = (2~r)-1(detg)bexP(-~[Px,x2+2PxyXY +P,,Y21>, (2.7) 

(rr) = P-W, r = r ( x ,  y), (2.8) 
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According to  equation (A 11) in appendix A, the elements of P-l (or the second 
moments) obey the following fist-order differentia1 equations in t :  

dt  = 2D+ 2G&-,l; (2.9) 

Qfi;; + aG&i ; (2.10) d B 2  -= 
dt 

'IF; -- - 2 0  + 2uGP;. ; 
dt 

(2.11) 

with /3;J(O) = /3;:(0) = &i(O) = 0, which is sufficient to ensure that the distribution 
(2.7) satisfies the initial condition (2.4) (see appendix A). 

Solution of (2.9)-(2.11) is straightforward. We find 

a;.(= (x2)) = ~ ~ D s i n h ( 2 a ~ G t ) + ~  a-1 Dt, 
(2.12) 

#?;; ( = (xy)) = $ D[cosh (2a)Gt) - 11 

&i(= (ya)) = a+1 -Dsinh(2a)Gt)-(a-l)Dt,  

(2.13) 

(2.14) and 

which are easily converted into the desired coefficients Is,, rBzy and &,: 
2aW 

and 

(2.15) 

(2.16) 

(2.17) 

where $(t) = (a + 1) sinh (2aMt) + 2at( 1 - a) at, 
X ( t )  = DQ-l((a + 1)2[cosh (2aiGt) - 11 - 2a(a - 
A(t) = (a + 1) sinh (2a)Gt) - 2at( 1 -a) Qt 

Gat2}, 

and # ( t )  = cash ( 2 d G t )  - 1. 

One additional requirement for the coefficients must be met in order that (2.7) be 
a solution which can be normalized in an infinite medium for all time: the quadratic 
form PZzx2+ 2fiWxy+~,,ye must be always positive-definite. Clearly this means that 
we must have 

(a) pXx 2 0, rByY 2 0 for all t ,  

and (b )  PXZP,, 2 P& for all t. 
These two conditions are satisfied for all a between - 1 and + 1. 

dimensional flow given by (2.6) : 
Thus the probability distribution takes the explicit form for the general two- 
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It is worthwhile to consider three special cases of the general flow field (2.6) and the 
coupling between diffusion and convection which is revealed by the behaviour of the 
probability fJr; t )  with time. 

Case 1. Purerotation (a = - 1).  Whena = - 1 equations (2.12), (2.13)and (2.14)give 
the second moments 

(z2) = ( ~ 2 )  = 2Dt, {w) = 0, 

with the corresponding simple Gaussian probability 

(2.19) 

We conclude that, despite the shear, diffusion proceeds uninfluenced by the bulk 
rotation of the liquid. 

Case 2. Simple shear (a = 0) .  In  the limit a = 0 we find 

(xZ) = 2Dt[l+ )(Gt)2], {y2) = 2Dt, { ~ y )  = DGt2, 

which determines the probability distribution as 

(2.20) 
3 

fa&;.t) = (4nDt)-l ((at).+ 
This is identical to the solution obtained by Elrick (1963) for convective diffusion from 
a point source in simple shear. The results for the second moments agree with the 
analysis given by van de Ven (1977), with the exception of the cross-term (zy) = DGt2, 
which he mistakenly concluded was zero. Coupling between diffusion in the y direction 
perpendicular to the flow is illustrated by the average {x2) ,  which is greater than the 
Einstein term 2Dt by the factor [1+ g(Gt)2]. The physical basis of enhanced diffusion 
is rooted in the fact that when the random motion of a particle results in its displace- 
ment into a region where the liquid velocity differs from that at the original point, 
subsequent convection of the particle with the new velocity tends on the average to 
augment pure diffusion. This effect is a familiar one on a molecular scale in flow- 
induced dispersion (Taylor 1953; Lighthill 1966; Gill & Sankarasubramanian 1970; 
Chatwin 1977), and is also analogous to the coupling of molecular and turbulent 
diffusion described by Saffman (1960). The purpose of the following section is to 
examine this coupling for colloidal particles in more detail using the appropriate 
Langevin equation, but for the moment we examine one more special case of the flow 
(2.6). 

Case 3. Pure elongation (a = 1). For a = 1 the second moments exhibit a high 
degree of enhancement over simple diffusion, to wit 

(9) = (y2) = DG-lsinh (2Gt), (xy) = DG-l[cosh (2Gt) - 11, 
with the probability density 

As is well known simple shear (a = 0) is a superposition of pure rotational and pure 
elongational flows, yet the diffusive-convective coupling is not simply additive. In 
fact, the rotational component of simple shear acts to retard convective enhancement 



110 R. T .  Foister and T .  G.  M .  van de Ven 

FIGURE 2. Orientation distribution functionsp(q5) for simple shear (a) and pure shear or elongation 
( b )  for various dimensionless times Gt. For a particle at  the origin at  t = 0, p(q5) d$ is the 
probability of finding the particle between q5 and q5 + dq5 at time t .  Notice that in pure shear the 
orientation distribution is stretched out much more than in simple shear and that its maximum 
always points in the aame direction ; this is due t o  the absence of a rotational component in such 
a flow. 

of diffusion relative to pure elongation. This is illustrated graphically by polar plots 
of the probabilities pa=o($) and pa=l($) (figure 2) which are the probabilities that a 
particle situated initially at the origin will have been displaced in a dimensionless time 
Gt such that a line connecting the particle centre and the origin will make an angle $ 
with the X axis. pa($) is obtained from fa(r; t )  by transforming to the polar co-ordinates 
T ,  $, with 

then integrating the result over all possible values of r from zero to infinity. For simple 
shear (a = 0) and pure elongation (a = 1 )  the results are 

x = rcos#, y = rsin$, 

where + sin2 4, 12( COB Q, - ( G t / 2 )  sin $)2 

(Gt)2+ 12 g($; t )  = 

[cash (2Gt) - 114 
pa=1(’) = 24n sinh (2Gt) - [cosh (2Gt) - 11 sin 2$* 

and 

(2.22) 

(2 .23)  
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For comparison the simple Gaussian distribution (2.19) which of course shows no 
effect of coupling has the polar representation 

since all angles are equally probable when the displacements are completely random. 
Apparently the differences illustrated by plots of (2.22) and (2.23) between simple 
shear and pure elongation are attributable to the rotational component of simple 
shear. Indeed, the spreads in the distribution, as evidenced by the time-dependences of 
the respective second moments for t < G-I, are practically identical, for example 

( x ~ ) ~ ~ ~  = 2 D t [ l +  simple shear, 

( x ~ ) ~ = ~  N 2Dt[1+ $(Gt)2] elongation. 

In this short time rotation has not yet displaced a particle from a ‘stretching’ into a 
‘compressing’ quadrant (see figure 1 )  in simple shear. For longer times, even though 
the elongational component of simple shear will continue to influence convection of 
the particle, the rotational component inhibits rapid increasing of the spread which 
characterizes pure elongation, where all particles eventually find themselves in regions 
of flow where ‘stretching’ takes place. Thus in simple shear the balance between 
‘stretching’ and ‘compression’ results in an enhanced diffusion, but nowhere near 
the magnitude of that for pure elongation. The effect of the rotational component on 
simple shear is also manifest in the clockwise rotation of the maximum in pa=o(#) for 
increasing times Gt, while 

Although the analysis of convective diffusion for times greater than the relaxation 
of the velocity autocorrelation is complete with the determination of the probability 
f(r; t ) ,  there are still important aspects of the coupling which are revealed when we 
consider the Langevin equation for a spherical colloidal particle subject to a velocity 
field. In  the following section we approach the problem from this point of view. 

always has a maximum a t  4 = in. 

3. Brownian motion in shear fields: Langevin analysis 
(i) The Langevin equation. The basic assumption which enables us to construct a 

Langevin equation for a spherical particle subjected to an internal velocity field, is 
that the force which determines the motion of the particle can be written as the sum of 
(a )  a systematic frictional drag due to the velocity of the particle relative to the bulk 
motion of the liquid in its immediate vicinity, and (b )  a random force which arises (at 
least in the phenomenological point of view) from fluctuations of the liquid velocity 
field about its average bulk value in the vicinity of the particle (Chow & Hermans 1972, 
1972a; Bedeaux & Mazur 1974). From the molecular point of view both (a)  and ( 6 )  are 
the result of collisions between the particle and the liquid molecules, which exhibit 
constant thermal motion and, in the case of a bulk laminar flow, large-scale cooperative 
motion as well. Thus for an isolated Brownian particle of mass m, subject to no external 
field, the Langevin equation is 

mf = Ffric + Frand(t) (3.1) 

The dots denote differentiation with respect to the time t .  
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We assume that the frictional drag Ffri, is proportional to the relative velocity 

i- - v(r), 

v(r) being the value of the liquid (bulk) velocity which coincides with the particle 
centre of mass. Strictly speaking the drag on the particle should be evaluated in terms 
of Faxh’s  theorem (Happel & Brenner 1973), but for a spherical Brownian particle 

b / l < <  1, 
of radius b such that 

where 1 is a characteristic length scale over which significant variations in v occur, one 
may substitute for a surface average of the velocity field the value of v coincident with 
the centre of the sphere. For our purposest here the proportionality constant between 
the drag and the relative velocity is the familiar Stokes’ constant g = 6nqb, q being the 
liquid viscosity. 

The Langevin equation is then a stochastic differential equation for the position r(t) 

(3 .2 )  
of the Brownian particle: f+p[i--v(r)] = F(t), 

where p = g/m is the reciprocal relaxation time for the velocity autocorrelation of the 
particle (Chandrasekhar 1943) and the random force per unit mass F(t) is assumed to 
be Gauss-Markov with the correlation properties (Wang & Uhlenbeck 1945) 

(e,. F(t,) e,. F(t2) ... e,. F(t,,,,,)) = 0, 

(e, * F(tl) e,. F(t2) * * e, - F(t*?J) = c. (e, * W,) e, * F@gD (e, * F(t8) e, F(t,)), 

(3 .4 )  

all 
Pairs i , j  = q y , z  and n 2 0. (3 .5 )  

The delta-function correlation (3 .3 )  means that, as far as appreciable changes in the 
velocity of the particle (or its position) are concerned, the random force is totally 
uncorrelated with its value a t  a previous time. The strength of this correlation follows 
from the equipartition of energy which we assume existed at time t = 0, i.e. the initial 
distribution of velocities available to the particle was Maxwellian. In determining 
higher-order correlations by means of (3.5) the sum is taken over all of the unique 
correlation products one may construct by dividing the 2n times into pairs. 

Before we make use of (3 .2 )  and the properties (3.3)-(3.5) for the specific case of 
simple shear, the initial conditions for solution of the Langevin equation should be 
made clear. As we have just stated, for all times t < 0, the system (Brownian particle 
plus liquid medium) is in thermal equilibrium. At some time t > 0, we create 
a velocity field v(r) in the liquid which of course disturbs this equilibrium. In the 
calculations which follow, we will for the most part be interested specifically in times 

7 Actually Stokes’ result for steady flow is insufficient to characterize the resistance of a 
Brownian particle, as waa pointed out originally by Lorentz (1921), when the mass density of the 
particle is of the same order as the density of the suspending medium. Replacing the Stokes’ 
constant 5 by a time-dependent operator has interesting consequences in connection with 
persistence of the random force and velocity autocorrelations (Chow & Hermans 1972), the 
intrinsic viscosity of rod-like particles (Foister & Hermans 1977) and the mean-squared displace- 
ment of spherical particles (Sdman 1976). For a discussion of the theoretical basis of the 
Langevin equation with non-steady friction from the fluid-mechanical point of view, see Hinch 
(1976). 
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far removed from t = 0 as well as the time when the flow v(r)  was fully established. This 
also corresponds to the ‘diffusion limit ’ which refers to times t satisfying 

For times satisfying this condition, the Fokker-Planck equation becomes the con- 
vective diffusion equation (Chandrasekhar 1943) and the initial conditions (velocities) 
no longer influence the particle motion. However in some cases it is necessary to take 
the initial conditions into account, especially if we are concerned with times which are 
less than this relaxation time. 

(ii) Calculations for simple shear. In this section we deal specifically with simple 
shear flow [a = 0 in (2 .6 ) ]  although it is possible to show that equations (2.12)-(2.14) 
for the second moments (arbitrary a) follow from the Langevin equation using the 
field (2 .6 )  for times t $ P-l (appendix B). The nature of coupling between convection 
and diffusion is clearly illustrated simply by considering the case a = 0, so it is not 
necessary to discuss the general flow in terms of the Langevin equation. 

We suppose that a Cartesian co-ordinate system (x, y) is located such that its origin 
coincides with the initial position of the particle centre. For the simple shear v = Gye, 
equation (3 .2 )  can be expressed in component form as 

t $ p-1. 

Z + P ( k - G y )  = X ( t ) ,  ( 3 4  

g + p g  = Y( t ) ,  (3 .7)  
where X ( t )  and Y(t )  are components of the random force per unit mass. Obviously 
motion in the direction of flow (2) is coupled to motion in the direction of the velocity 
gradient (y) due to the spatial dependence of the shear field. 

We may solve (3 .6 )  and (3 .7)  for an assembly of particles all of which initially have 
a given velocity with components k(0) and g(0):  

i ( 0 )  
P x ( t )  = - (1  - e-lt)  + dh  [ 1 - e N t  41 [ X ( h )  + PGy(A)],  

The mean squared displacement in the flow direction isobtained by squaring (3.8) and 
performing the ensemble average, which includes an average over all possible initial 
velocities which are distributed according to the equilibrium law (in two dimensions) 

m 
Znk, T p ( v ) d v  = ~ exp [ - m v 2 / 2 k B T ]  d v ,  v = v(X, y), 

with zero mean and second moment in accordance with the equipartition of energy: 

$ m ( v 2 )  = k,T.  

We find, using the appropriate correlation properties of the random force components, 

2k,T 
( X 2 ( t ) )  = - mP2 (@t - 1 + e-pt) 

The first term is the result of pure diffusion, while the second term, proportional to 
Ca, is the result of diffusive-convective coupling. The evaluation of (3 .10)  is fairly 
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straightforward. However, rather than writing out the general result, we may look 
at two special cases. 

Case 1. t 9 $-l, the ‘diffusion limit’. The first term on the right-hand side of (3.10) 

5 
or simply 2Dt with the ‘Einstein relation’ between the diffusion and frictional 
coefficients. Making use of (3.9) and neglecting terms of relative order ($t)-l or less, 
the second term reduces to 

2 G 2 D S : d h ~ : d h ’ ~ ~ d ~ / o A ‘ d s ‘  6(s-s’), (3.11) 

which is evaluated by exchanging orders of integration (hcrs) and ( h ’ o s ’ ) .  For 
fixed s (or s’), h(A’) ranges from s(s’) to t .  Thus 

yields 2- kBTt 

2G2D/:ds’J: ds ( t  - s )  (t - s’) 6(s - s’) = gG2Dt3. 

This may be combined with the pure diffusion result 2Dt to yield a value of the mean- 
squared displacement { x 2 )  in agreement with the corresponding second moment of the 
distribution (2.20). 

Case 2. t 4 P-l. In  this limit one finds (Chandrasekhar 1943) that particle inertia will 
dominate the mean-squared displacement in the absence of shear. Thus the first term 
in (3.10) contributes to ( x 2 )  the amount 

which is the average of the squared displacement a particle would have if it moved in a 
time t with a steady velocity x ( t )  which is distributed among the ensemble according 
to the Maxwell-Boltzmann law. The second term reduces to 

which means that the result in the absence of shear, kBTt2/m, is increased by the factor 
[I + i (Gt )2]  when shear influences the motion of the particle via the resistance factor 
in the Langevin equation. 

Coupling for small as well as ‘large’ times (i.e. t 9 P-l) is also revealed in the corre- 
lation between the Y component of the random force, Y(t‘) ,  at time t’ and the displace- 
ment x( t )  at time t. Multiplying (3.8) by Y(t’) and averaging, yields: 

where averages such as (i(0) Y( t ’ ) )  vanish owing to causality for t’ > 0 and 
( X ( t )  Y( t ’ ) )  = 0 since different components of the random force are always uncorre- 
lated. Integration of this expression gives 

10 for t’ 2 t ,  

For (t - t ’ )  < P-l, ( x ( t )  Y( t ’ ) )  21 k,Tm-l GP2(t - t ’ )3 ,  while, at the other extreme, 
(t - t‘) BP-’, (x ( t )  Y( t ’ ) )  N k,Tm-l G ( f -  t’), showing that the correlation between the 
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x component of position at time t and the y component of random force a t  an earlier 
time t’ always increases with the time difference (t  - t’). I n  contrast we find that the 
correlation between the x component of position and the x component of the random 
force is given by 

10 for t’ 2 t ,  
(3.13) 

which approaches a constant value of (2k,T/m) when (t -t’) $.p-’. The difference 
between (3.12) and (3.13) is due, of course, to the coupling of displacement due to  
convection and the random force component which determines the particular value of 
the velocity field which influences the convective displacement. The fact that  the 
correlation (3.12) attains a strength comparable to (3.13) only for time differences on 
the order of G-l is in agreement with the observation that the coupling term in the 
mean-squared displacement becomes comparable to the pure diffusion result whenever 
t - G-l [see equation (3.11)]. 

I n  concluding the treatment of diffusion in linear shear flows we emphasize that, 
although the Langevin equation predicts diffusive-convective coupling for extremely 
small as well as large times, as a practical matter this coupling will be observable only 
for times t on the order of the reciprocal shear rate G-l. This conforms qualitatively to 
the experimental observations of Vadas et al. (1976) on the rotary Brownian motion of 
doublets of colloidal spheres in Poiseuille flow, where because of diffusive-convective 
coupling the mean-squared angular displacements (with respect to rotating co- 
ordinates) begin to differ from the pure diffusion result for times on the order of G-l. 

The following section deals with the diffusion of particles in Poiseuille flow. Here the 
velocity field is a quadratic function of the co-ordinates, so that the general method of 
appendix A is insufficient to determine the full solution for the probability which 
satisfies the convective diffusion equation. We approach this problem instead by 
calculating moments of the probability distribution using the Lnngevin equation. 
From our knowledge of the moments we then construct approximate solutions of the 
convective-diffusion equation for local regions in the flow field. 

4. Brownian motion in Poiseuille flow 
(a )  Calculations of second moments from the Langevin equation 

The velocity field for Poiseuille (pipe) flow with respect to a fixed Cartesian system 
(x’, y’, 2’) (see figure 3) is 

(4.1) 
where y = (Vmax/R$), V,,, being the maximum velocity a t  the centre of the tube and 
R, the tube radius. By our definition of co-ordinates x‘ is along the tube axis, and 
(yf2 + zI2),f defines the radial distance from the centre. 

Consider now a particle which is initially situated a t  the point [x’(O), y’(O), z‘(0)]. 
If we define a new translating system (x, y, z )  related to  (XI, y‘, z’) by 

v:, = y(Rg - yf2 - z”) ,  v;, = vz, ’ = 0, 

x = 2’-[x‘(O)+v’(O)t], 

Y = Y‘-Y‘(O), 
2 = 2’ - Z ’ ( 0 ) )  
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FIQURE 3. Relation in Poiseuille flow between the initial velocity co-ordinates X ,  Y of a sphere 
at time t = 0 at distance go from the centre and the space-fixed co-ordinates X’,  Y’. The 2 axis 
(not shown) is directed towards the viewer. 

with v’(0) = y[R% -y’2(0) - 2’2(0)], 

then the velocity field (4.1) becomes, in the new system, 

v, = - y[y2 + z2 + 2((yy’( 0) + zz‘(O)}], 
vv = v, = o! 

(4.2) 

Equation (4.2) defines a field relative to the (x, y, z )  system which translates a t  all times 
with a velocity determined by the initial position of the particle, i.e. by y’(0) and z’(0). 
With this choice of co-ordinates the flow consists of a linear and a parabolic region for 
all y’(0) and z ’ (0)  except at the tube centre, where the flow is completely parabolic. 
Consequently, for particles with y’(0) + 0 and/or z‘(0) 4 0, we expect enhancement of 
diffusion similar to that calculated in the previous section for simple shear. This type 
of behaviour will persist for as long as the particle has not had sufficient time to diffuse 
out of the linear region. This time for an ensemble of diffusing particles will be roughly 

[y’2(0) + 2 ’ 2 ( 0 ) ] / 0 .  

On the other hand we may expect a qualitative difference in the enhancement of 
diffusion between simple shear (or two-dimensional linear) flows and Poiseuille flow 
for particles situated at or very near the tube centre where y’(0) and z’(0) are small and 
the quadratic term plays a role in the resistance. The calculations below bear out these 
qualitative observations. 
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Taking the field (4.2) into account and writing y’(0) = yo and ~‘(0) = zo the Langevin 
equations for displacements along each of the co-ordinate axes are 

5+p+py[Y2+22+ 2(yyo+zz,)-J = X ( t ) ,  (4.3) 

y+py = Y(t) ,  (4.4) 

and z + p  = Zft). (4.5) 

As in the case of simple shear these equations may be integrated formally to give 

(4.7) 

Here x is coupled to y and z, but there is no coupling between y and 2, so it is sufficient 
to consider the related problem of Brownian motion in plane Poiseuille (channel) flow, 
using only equations (4.6) and (4.7) above and taking zo = 0. 

To determine (x2(t))  we square (4.6) and perform the ensemble average,? using once 
again the correlation properties (3.3), (3.4) and (3.5) together with the initial conditions 
discussed previously. Subtracting for the time being the contribution 2Dt due to pure 
longitudinal diffusion and neglecting terms of relative order (/3t)-l or less since our 
concern is the ‘diffusion limit ’, we find 

+ 4 ~ 0 7 ~  (Y2(4 ~ ( h ’ ) )  - ~ Y P ( X ( ~ )  y2(A’) +   OX(^ ~ ( h ’ ) ) ) .  (4.9) 

The average (y2(A) y(h’)) vanishes owing to property (3.4), while averages involving the 
products X(h)y2(h’)  and X(h)y(h’)  vanish by (3.3). Furthermore the term in (4.9) 
proportional to ( y (h )y (h ’ ) )  is just the contribution from the linear region of flow 
analogous to simple shear which yields a tS time dependence. Thus 

( ~ ~ ( 8 ) )  = DP + y2 dh dh’ (y2(h) y2(h‘)). J: J: (4.10) 

To evaluate the remaining term in (4.10) which originates from the parabolic region, 
we make use of (4.4) for y( t ) .  In  the diffusion limit 

t Cox (private communication) has calculated (z*) in plane Poiseuille flow by solving 
differential equations which can be derived by multiplying the convective diffusion equation for 
plane Poiseuille flow by z4, then integrating over all space. His results are identical to those we 
calculate here. This is also the method employed by Brenner & Gaydos (1977) who considered 
convective diffusion of colloidal particles in small pores. Other approaches (Saffman 1960; 
Chatwin 1977) may be used, but essentially one must calculate the same average quantities from 
the Langevin equation. 
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The correlation of the random force component Y(t) at four different times may be 
found by referring to property (3.5). Now there are three possible ways to arrange the 
four times 5, s’, u and u’ into correlation pairs: 

(Y(4 Y(0) (Y(U) Y(U’)), (Y(4 Yb)) (Y(4 Y(u’)), (Y(5) Y(u’)) ( Y ( 4  Y(U)). 

But of these three, only two are unique, since the second and third are equivalent 
because integrations over s(u) and ~‘(u’) are equivalent. Thus 

(Y(5)  Y(5’) Y(u) Y(u’)) = ( 2 y ~ ) 2 { f 3 ( 5 - 5 ’ )  - 6(u-u’) +~(5-u)6(s’-u’)}, 

which, when used in (4.11), gives - 

l2 for A’ < A ,  
Ah’+h2 for h < A’. 

(y2(h)yz(A’))  = 4D2 

The parabolic contribution then follows by straightforward integration and the total 
mean squared displacement (including pure diffusion) becomes 

(zz( t ) )  = 2Dt[ 1 + ty2y,2t2 + gDy2t3]. (4.12) 

For three-dimensional pipe flow coupling in the z-direction adds to (4.12) two terms, one 
of which is equivalent to (4.1 1) and the other is the cross term involving (y2(A) z2(A’)). 
Evaluation of this average is straightforward, where we again use the property 
(4.5). Consequently for three dimensions we find: 

(z2(t)) = 2Dt[l +$y2pgt2+yDy3t3],  (4.13) 

where po = (yo2 + zg)* is the initial radial position of the particle. 

we expect (4.13) to be valid in pipe flow for times t, satisfying 
This result is rigorously correct only for particles in an infinite medium. Realistically 

For colloidal particles D is of order 10-8cm2s-1. If a particle finds itself initially at, 
say, 0.9Ro, where R, is 100pm, then this time is of order lOOs, which is still quite long 
enough for the coupling between diffusion and convection to have an effect on the 
spread of the probability distribution. For molecular diffusion, however, D is several 
orders of magnitude larger than 10-8, so that the validity of (4.13) for macromolecular 
particles will be restricted to shorter times, i.e. for initial radial positions near thetube 
centre. For longer times (i.e. t B Rg/D, which is the characteristic time a particle would 
take to sample all velocities in the profile) diffusive-convective coupling of the type 
we have been discussing must yield to ‘Taylor dispersion’ (Taylor 1953; see also 
Brenner & Gaydos 1977), where (z2( t ) )  again increases linearly as t ,  but with a pro- 
portionality constant (the ‘ dispersion coefficient ’) inversely proportional to D.  We 
must therefore reiterate that no account is taken in the treatment thus far either of 
hydrodynamic interactions between the diffusing particle and the bounding wall, or 
of the rebounding (reflexion) of particles at the wall. These effects are of some interest, 
even for the time scales relevant here however, and, as $ 5  shows, will be very important 
for particles located initially near the wall. 
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Other quantities that reflect coupling of convection and diffusion in Poiseuille flow 
are the elements of the mean squared displacement dyadic (rr), where 

(rO= (XY) (Y2) (ZY) ' (4.14) c:: :; ::I 
For isotropic diffusion in a medium with no bulk flow all of the off-diagonal elements in 
(4.14) are zero. However, for Poiseuille flow it can be shown, using the Langevin 
equations, that 

(xy) = - 2yyO09, (xx) = - 2yz0Dt2 and (yz) = 0. 

Furthermore (y2) = (9) = 2Dt. Also the trace of (rr) is the vector mean-squared 

(4.15) 
displacement: 

tr (rr) = (r2) = 6Dt[l ++y2p; t2 + y y 2 D t 3 ] .  

Finally the covariance of r(t), given by 

(AT2) = ([r - <I-)]- Er - (r)I> 
can be obtained by noting that, from equations (4.6)-(4.8), 

(x) = -22yDt2, (y) = (2) = 0, 

giving ( ~ r 2 )  = 6~t[i + $y2p;t2 + gpot31. (4.16) 

The fact that for an infinite medium the mean displacement in the flow direction is 
on the average negative can be explained by the argument given by Chatwin (1976): 
owing to the nature of the velocity gradient in Poiseuille flow (increasing linearly as 
the radial distance from the centre), although radial diffusion itself is isotropic, 
dieplacement away from the centre is into a region of flow where the particle will 
encounter a greater negative change in liquid velocity than an equal displacement 
toward the tube centre where liquid velocities are greater, but the gradient itself is 
smaller. Thus on the average the displacement of the particle in the flow direction will 
be less than that of the origin which travels always with the initial velocity of the 
particle. In  anticipation of the results of $ 5, we might note that hydrodynamic inter- 
action of the particle and wall may introduce some anisotropy in diffusion through the 
Werent frictional force experienced by the particle as it moves toward or away from 
the wall. We may expect qualitative differences in mean particle motion as reflected 
m the mean displacement (x} for example, for particles with initial positions near the 
wall, even though the results for (x) above are formally independent of initial position. 
Again we refer to $ 5  for a discussion of these points. 

One further remark is in order concerning convection-enhanced diffusion in 
Poiseuille flow as compared with the linear flows of the previous section, especially that 
of simple shear. The correlation between the random force perpendicular to flow 
and displacement in the flow direction is identical in Poiseuille and simple shear 
h c e  both flows have linear components. It may seem somewhat puzzling a t  first 
sight, however, that, for a particle initially located at the exact centre, there will be 
enhanced diffusion in the flow direction, but the correlation between say Y(t') and 
SO) [see equation (3.12)] is zero, as can be verified using the Langevin equations with 
yo = zo = 0. These two observations are not contradictory, since with respect to the 
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tube centre, the velocity field is radially symmetric. Consequently axial displacements 
which arise due to positive or negative random forces propelling the particle away from 
the centre, are always negative with respect to the origin travelling at V,,,. Since we 
assume that the random force is Gaussian with zero mean the average of products like 
x(t) Y(t') should, because of the symmetry, be zero. 

On the basis of the results we have found in this section, especially equation (4.13), 
we will now calculate some series expansions of the probability distribution for 
particles diffusing in a two-dimensional (plane) Poiseuille flow (an extension to tube 
flow is straightforward). The first case is for particles located initially near the point 
of maximum velocity. 

(b); Series expansions for convective diffusion in Poiseuzlle $ow 
(i) Expansion near the centre. Introducing the following dimensionless parameters: 

t* = Dt/y:, x* = x/yo, y* = y/yo, z* = z/zo and cr = y d / D  

we can write the convective diffusion equation for plane Poiseuille flow as 

a f p *  = v*y+ cr(2y* + y*2) af/ax*. (4.17) 

Here the dimensionless parameter cr is a local PQclet number and is the ratio of two 
characteristic times r3 and 7,; rc is the characteristic convection time yo/v and ra the 
characteristic diffusion time y:/D. Thus cr = rd/rc. Near the centre yo < 1 and therefore 
cr < 1. For initial positions yo far from the centre y*2 < y* and the equation reduces to 
the equation for simple shear flow by replacing 2cr by - Gy:/D, which is equivalent to 
replacing - 2yy, by G. 

Expressing (4.12) in terms of the above dimensionless parameters we have 

(x*2) = 2t*++2t*3(1+3*). (4.18) 

This suggests that (4.17) can be solved as a series expansion in cr and that only 

Let f = f0+crj1+a2fi+ .... (4.19) 

terms of order crz contribute to the second moment of the distribution function f. 

When cr = 0 (4.17) reduces to a simple diffusion equation. Consequently 

1 x*2+ y*2+ 2*2 

Substituting (4.19) into (4.17) and collecting terms of order cr yields 

at* afl = V*Zf1+(2y*+y*2)$*. af 

Making use of (4.20) this can be written as 

8% V*2fl-- at* = -hl(r*; t*), 

(4.20) 

(4.21) 

(4.22) 

which is an inhomogeneous diffusion equation with the source function hl, given by 

x*(2y* + y*2) x*2+ y*2+ z*2 
h1 = - 

1 671% *8 
(4.23) 
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The Green's function of equation (4.22) is obtained by replacing x* by x* -x' etc. and 
t* by t* -t' (Morse & Feshbach, 1953) in (4.20). Thus the Green's function is 

i (2" - x')2 + (y* - y')2 + (z* - 2')2 

4(t* - t ' )  
1 

g(r*lr'; t*I 1' )  = 

= 0 otherwise. 
when t*-t' > 0, 

(4.24) 

Hence 
r m  I-!* 

Integration of the source function using (4.24) yields: 

x*(t* + 3y* + y*2) x*2+ y*2+ 2*2 

48n%*Q 
fi = - (4.25) 

The above procedure can be repeated to obtain the solution to order 5,. Substituting 
(4.19) into (4.17) and collecting terms of order v2 yields an equation for f 2 :  

afi = v*y, f (2y* + y*2) - afl  

at* ax** 
which can be written as 

(4.26) 

2 * '  (4.27) V*Y,-" af = -h  (r* t )  
at* 

where 
( 1  - ~ * ~ / 2 )  [2y*t*+ ( 6 + t * ) ~ * 2 + 5 y * ~ + y * ~ ]  

h2(r*,t*) = 
48&t*3 4t* 

(4.28) 

Evaluating the required integral of the source function h, using the Green's function 
(4.24), we find 

fz = (4874-1[a0+a1y* +a2y*2+a3y*3+a4y*4+u5x*2+a6x*2y*+a7x*2y*2 

+ a,  x*2y*3 + a, ~ * z y * ~ ]  exp 

where the a,'s are all functions of t*:  

(4.293) 

a - --Xt*q-t*$, a 1 -  - -i t*&, 0 -  10 

a2 = - gt** - 3/2t*&, 

a4 = - 1/6t*t, 

a, = l/t*&, 

a ,  = 1/2t*P, 

a, = - l/t*t, 
a, = At*)+ 1/2t**, 

a, = 3/10t**+ 3/4t**, 

a, = 1/12t*3. 

With the aid of (4.25) and (4.29) it  is possible to calculate the moments o f f  up to 
order c2. For instance the contribution of the term of order v to (r*,) is zero while the 
contribution of the vz term to (r*2): 

J -a J -a J --m 
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I 

Frava~: 4. Orientation distribution function p ( # )  for particles near the centre of a parabolic flow 
for the case u = 0.1. The co-ordinate system shown is the 'initial velocity' co-ordinate system. 
Its origin is slightly off centre with respect to a space-fixed co-ordinate system (see figure 3). 

Substituting (4.293) into (4.30) yields: 
(r*2) = 3*3 + lt*4 a ,  

in agreement with result derived earlier. The results of the previous section prove that 
terms of order greater than u2 do not contribute to the second moment. 

As in 0 2, the deviation from Gaussian behaviour for small values of u can be con- 
veniently described by the polar plot p(q5), where 

p(q5) = S m t * r * 2 ~ ~ f f d B a i n B [ f o + u ~ ~ +  0 by2], 
with 

r*2 = x * ~  + y*2 + z*~, x* = r* sin 8 COB #, y* = r* sin 8 sin q5, z* = r* cos 8. 

A typical example ofp(q5) is given in figure 4 for the caw u = 0.1. Note the asymmetry 
in p(q5) which appears after a time Dt /y i  > 0.1. This behaviour is in accord with the 
asymmetry of the velocity field itself. 

(ii) Solution far removed from the centre. Introducing the following dimensionless 

one can write the convection diffusion equation for plane Poiseuille flow as 

(4.31) 
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In  the limit u -+ co equation (4.31) reduces to the equation for simple shear by 
replacing - 2yy0 with G. Expressing (4.12) in terms of the above parameters yields 

7 
3u 

{i?) = 22 4- 323 + - 24. (4.32) 

Recalling that when CT = T ~ / T ~  1, the particle will spendarelatively long timesampling 
the linear region of flow before it diffuses into the parabolic region. This ratio increases 
as we move farther away from the centre. Equation (4.32) suggests that (4.31) can be 
solved as a series expansion in rf: 

f = f0 + .-*fl + u-y2 + . ... 
The zero-order solution fo satisfies 

Hence recalling equation (2.20) for simple shear: 

(4.33) 

(4.34) 

(4.35) 

Substituting (4.33) into (4.31) and collecting terms of order a-f and u-l yields: 

(4.36 a) 

(4.36 b) 

The Green’s function of (4.36) is obtained, as can be proved rigorously, by replacing 
5 by (Z-x’), etc., and 2 by 2-t’ in (4.35): 

z’)7 -p(- 4(f-t’)[(2-t’)2+3] 4(f - t’) 
3[(Z-x‘) + (Z-t’) (g-Y’)p+ (Y”-y’)2+ ( -  

when Z-t > 0 but zero otherwise. (4.37) 

Spatial integration of the source function -g2& using (4.37) suggests a solution fl 

of the form 
az 

(4.38) 

Substituting (4.38) into (4.36a) shows that (4.38) is the correct solution and that 
where all of the coefficients b, are functions of f. 
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the functions bi’s are determined by the following set of coupled differential 
equations: 

3b4 b -- db3 52, + 27 -- 
dt  - -2Z(P+12)  P + 3 ’  

db, 3(2f2+3)  13fz+27 6b5 
dZ - P +  3 b3-2f(Z2+ 3)  b4-ZaS3’ 

d f  P + 3  

-- 

db, - 2(2ZZ+ 3 )  3(7P+ 9 )  9b, 1 
b4- 2f( fz+  3)  b 6 - K 3 - f # ( f Z +  3)t ’  

-- 

db, - 2lz + 3 29f2 + 27 1 --- 
dZ Z2 + 3 b6 - 2t(P + 3 )  b6 - t i ( ~ ~  + 3)s’ 

I 

I (4.39) 

Presumably the set of equations (4.39) have analytical solutions, but we were unable 
to find them. In principle the hi's can also be found by integrating the source function 
using (4.37),  but t b  seems, owing to the complexity of the integrand, too laborious 
a task. 

In  a manner analogous to that we employ to find$, it is possible to determiner,. 
The formal solution is 

16 

where the ti's are functions of Z and 0 < m < n (m and n are integers) with m + n = 0 , 2 , 4  
or 6;  this yields 16 terms in total. It is interesting to note that a 16 term expansion 
contributes just one single term to the second moment (P), namely 7t14/3a. 

5. Wall effects: Monte Carlo calculations 
The usual boundary condition taken at  the wall for convective diffusion in Poiseuille 

flow is the no-flux condition (Taylor 1953; Chatwin 1977). This is equivalent to saying 
that the diffusion coefficient does not change when a particle approaches the wall and 
that the wall acts as a perfect reflector. However, as shown by Goldman, Cox & Brenner 
(1967a, b )  the diffusion coefficient is a function of the ratio h/b, h being the distance 
to the wall and b the particle radius. Furthermore, they showed that the velocity of 
a particle is slowed down owing to the presence of a wall. For molecular diffusion the 
region near the wall where wall effects are important is usually very small compared 
to a tube radius and has little effect on, for example, the concentration of particles 
averaged over the tube cross-section. However, as we are mainly interested in con- 
vective diffusion of colloidal particles in Poiseuille flow, here wall effects can be rather 
important. For instance, the diffusion constant for a 1 ,urn particle in a tube of radius 
lOO,um, even at the centre, is about 1 yo lower than the value in an unbounded fluid. 
In  order to be able to examine diffusion in systems where wall effects cannot be 
ignored, we calculated the second moments of the distribution by using Monte Carlo 
methods. 
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Three wall corrections have to be taken into account. 
( 1 )  Diffusion parallel to the wall: for a particle a t  a distance h from the wall the 

tangential diffusion coefficient D, equals g,(h/b) D ,  where g ,  is a correction factor and 
D the diffusion coefficient in an infinite medium. 

(2) Diffusion perpendicular to the wall: the radial diffusion coefficient D, equals 
g,(h/b) D. Again g, is a correction factor. 

(3) The particle velocity u b  near the wall is less than the undisturbed fluid velocity 
and Ub equals g,(h/b) U ( d ) ,  U being the undisturbed fluid velocity at a distance 
d = h + b from the wall. 

The functions g,(h/b), g,(h/b) and g,(h/b) are all zero when h = 0 and approach one 
as h+m. This means that near the wall diffusion is no longer isotropic, since, 
the further away a particle is from the wall, the larger its diffusion coefficient will 
be. Numerical values for the gi’s can be found in the papers by Goldman et al. 
(1967 a, b).  

The displacement of Brownian particles in two-dimensional Poiseuille flow is given 
by the following set of equations (van de Ven 1977): 

d x  = g3(h/b) U ( d )  dt +R 
dh = R,(t). 

Here R,(t) and R,(t) are random displacements. In  integrating (5.1) numerically, R,(t) 
and R,(t) are chosen at  random in each integration step At from Gaussian distribution 
functions with zero mean and standard deviations [2g,(h/b) DAtji and [2g,(h/b) DAt]* 
respectively. For most calculations (except very near a wall) the position of a particle 
was determined after 100 steps and the procedure repeated 100 times. For comparison 
calculations were also performed from the case of the usual no-flux boundary condition. 
In  this case all the gi’s are equal to one and h changes sign when h + dh < 0 (reflexion). 

The results of such calculations are given in figures 5 and 6 for the case 

Pe = G,,,b2/D = 100 and R,/b = 100, 

corresponding, for example, to particles of 1 pm radius in an aqueous solution in a tube 
of radius R, = 100pm with a wall shear rate G,,, of about 7 s-l, a typical condition in 
a ‘travelling microtube device ’ (Vadas, Goldsmith & Mason 1973; van de Ven & Mason, 
1976). 

In  these figures the second moments are expressed, as before, with respect to an 
observer moving with the velocity of the particle a t  time t = 0; thus 3 = (x- U,t)/b 
and 9 = (h-h,)/b, U, and h, being the particle velocity and wall distance at  time 
t = 0. 

It can be seen that taking wall effects into account has a dramatic effect on (P) and 
(tj2), diminishing the second moments by sometimes several orders of magnitude, 
especially near the wall. I n  contrast reflexion has almost no effect on the second 
moments as compared to the calculations for an unbounded fluid. For the case of 
reflexion the second moment (Q2) can be readily calculated. The probability distri- 
bution function for a diffusive point source a t  do( = h, + b) ,  a reflecting wall at d = 0 
and an image source a t  -do is given by (Chandrasekhar 1943): 
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FIQURE 6. Second moment of the probability density function perpendicular to the flow direction 
aa a function of time for various ratios of wall distance to particle radius. The solid line at  the 
top and the daahed lines refer to the exact results for the cam of reflexion [equation (6.3)]. 
Monte Carlo calculations (A) for do/b = 1-05 are included. The solid line on top is indistinguish- 
able from Monte Carlo calculations (0) for d,/b = 50, which take hydrodynamic interactione 
into account. Other solid lines show Monte Carlo calculations with hydrodynamic interaction for 
various valuea of do/b. Pe = 100 and R,/b  = 100. 

and hence 

((d - = 2Dt + ( 2 4  + Dt) erfc 

The last three terms on the right-hand side of (5.3) are usually small compared to 
2Dt and affect only slightly a log (yz) v8. log t* plot (see figure 5 ) .  From figure 6 it can 
be seen that also for (x2) the correction due to reflexion at a wall is rather small. The 
corrections due to hydrodynamic interactions with the wall are, however, appreciable, 
especially near the wall. 

The calculations have only been carried to times where (xz) varies as t3. At much 
larger times, when particles start reaching the centre of the parabolic flow, (x2) will of 
course vary as t4  in accord with (4.14). 
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FIQURE 6. Second moment in the direction of flow as a function of time for the case P, = 100 and 
Ro/b = 100. 

(1) The solid line is a calculation for the case of an unbounded fluid with yo/b = 99, corre- 
aponding to the distance between a particle at the wall and the centre. Monte Carlo calculations 
(a) for the caae of reflexion for do/b < 1.05 (yo/b 3 98.95) fall within computational error on 
this curve. 

(2) The solid line is a theoretical curve for unbounded fluid with go/b = 50. Monte Carlo 
calculations for d/bo = 50 with (0) and without (A) wall effects are shown. 

(3) Monte Carlo calculations for do/b < 1-05 with wall corrections, showing that particles are 
dowed down appreciably by the presence of a wall. Calculations for 1-06 < d,/b < 50 fall 
smoothly in between curvea 2 and 3. 

6. Discussion 
In general coupling between random motions of colloidal particles and convection 

due to shear can be elucidated by a consideration of both the probability density as a 
function of time and also the motion of the particle as it is revealed by its stochastic 
(Langevin) equation of motion. Our results for the linear flows of FJ 2, which include 
solutions of the convective diffusion equation appropriate to the particular flow field, 
indicate that the degree of coupling increases as we move from pure rotational, through 
aimple shear to elongational flows. Here one is reminded of analogous behaviour which 
can be observed in the shear-induced breakup of aggregates composed of spherical 
particles with no appreciable Brownian motion (Kao, Powell & Mason 1979), where 
the least efficient flows are those dominated by rotation and the most efficient those 
dominated by elongation. 
Our calculations for Poiseuille flow using the Langevin approach are in general 

qualitative agreement with the theory of molecular dispersion of soluble matter in 
tubes, initiated originally by Taylor (1953), and subsequently extended by GilI & 
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Sankarasubramanian (1970, 1971), Chatwin (1977), and numerous others. Also, the 
results given by equation (4.13) for the mean-squared displacement in the flow direction 
suggest the following interesting possibility for determining diffusion coefficients in a 
mono-disperse flowing colloidal suspension. Aplot of In (x2) vs. In t should, fort -4 R%/D, 
have three linear regions corresponding to slopes of I, 3 and 4 respectively. Preliminary 
experiments using the ‘travelling micro-tube technique ’ (Vadas, et al. 1973) indicate 
that the linear region with slope 3 is readily accessible even for a relatively small 
number of measurements on a few selected particles. In  fact plotting data for only six 
polystyrene latex spheres (radius w 1 pm) suspended in water flowing with a maximum 
velocity of N 50,um/s in a 200,um diameter capillary, we find that this linear region 
has a slope of 3.1. With improved accuracy the intercept of this region should yield a 
value of the average self-diffusion coefficient D which is characteristic of the particles 
in the dilute suspension. Experiments are now under way to test the general pre- 
dictions of the theory and also to carry out measurements of diffusion coefficients 
in this manner. 

Finally the methods employed in this paper may be extended to the coupling of 
rotary Brownian motion and rotation due to hydrodynamical shear torques in 
suspension of spheroids with potentially useful application in the analysis of spreads 
in measured periods of rotation and other related problems (van de Ven, Takamura & 
Mason 1979). 

Appendix A. 
source at the origin in a linear field 

Solution of the convective diffusion equation for a point 

Consider the flux J(r; t )  given by 

J(r; t )  = - DVf(r; t )  + H(r; t )  f (r; t ) ,  (A 1) 
where f (r; t )  is the probability density at r and t ,  D is a scalar which is independent of 
r and t and H(r; t )  = A@). r is a generalized field linear in the co-ordinates r. For an 
incompressible liquid the trace of A(t) will vanish in accord with the equation of 
continuity, but in what follows we refrain from this assumption for the sake of 
generality. 

The probability f(r; t )  obeys the conservation law 

which may be combined with (A 1)  to yield the convective diffusion equation 

af+ at V . ( H f )  = DVY, 

or, in alternative form, employing the summation convention for repeated indices 

Here Hi = A$jxj and i, j = 1,2,3. We seek a fundamental solution of (A4) in an 
infinite medium; that is, we require 

limf(r; t )  = S(r) (A 5) 
t-0 
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and limf (r; t )  = 0. 
?+a2 

As a trial solution we take the generalized Gaussian distribution 

f (r; t ,  = B(t)  exp - [4pklxkx11 (A 7) 

with p k l  = &, and we assume that & l ( t )  xkxl is a positive-definite quadratic form in 
order to satisfy (A 6 ) .  B(t) is a normalization constant to be determined by 

Jdrf(r; t )  = 1 for all t .  

Substitution of (A 7) into (A 4) shows that the generalized Gaussian is indeed a solution 
provided the coefficients p k l  satisfy 

% + pi2 + p k i  + 2D$$l p i k  = 0, (A 8) 

+ A ,  + 2Dpi4 = 0. (A 9) 
1 dB 

and that B(t) satisfy 

B d t  
The nonlinearity of (A8) makes solution of the set of coupled equations for the 
coefficients b k l  a difficult task in all but the simplest cases. It is preferable therefore 
to  try to determine first the matrix of coefficients inverse to the matrix of &. To 
obtain an equation for p,$ equivalent to (A 8) for p k l  we first write (A 8) in the form 

dai i+Amip, l+A, jp~m+2Dp~jP, i  at = 0. (A 10) 

Multiplying (A 10) from the right by /?kl we find 

a i l  
- P i j - A m < p m j & ' - A m j  dt 4 m - 2 D P m j  an, = 0, 

where we have used flijpkl = Sj,. Multiplying now from the left by &l, we have the 
following equation for pit :  

Aki pk1 - pG1 Ati - 206kz = 0. aai2 
(A 1 1 )  -- 

at 

In  order to specify initial conditions for the solution of (A 1 1 )  and (A 9) ,  we must 
investigate the conditions under which the distribution (A 7) becomes a delta function 
in the limit t + 0. Obviously we must have 

lim drf(r; t )  = 1 .  
h O  s 

This requirement is satisfied by taking 

or, equivalently, 
B(t) = (27r)-* (det P)& 

B(t)  = (27r)-3 {det p-l}-*. 

In  addition with B(t)  given by (A 12) one can show by a straightforward calculation, 
using equation (A 1 1 )  for d&l/dt, that the differential equation (A 9)  for B(t) is 
satisfied. Consequently the distribution will remain normalized for all t .  

5 FLM 96 
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The condition that (A 7) with (A 12) reduce to S(r) at t = 0 will also require that 

(a)  lim (27Q-9 (dct P-')--i exp [ - &/3klxkxz] = co 
t- to 
r=O 

and 

Now (a)  is satisfied if we take all Pkl(0) identically equal to zero, That this condition 
also satisfies (b)  can be verified in the following manner. 

The determinant of p-' appearing in the normalization constant may be written in 
alternative form (Happel & Brenner 1973) as 

det B-' = 4 /32  /3G1 B d  cpqt %u, 

where eijk is the unit alternating tensor. Obviously (detP-l)t approaches zero as 
(pi1)* if we take /3G1(0) = 0. The limit of exp [ - $&xk x z ] ,  on the other hand, is 
determined by the behaviour of /3kl as t -+ 0. If Pkl --f 0 as t -+ 0 then /3kl approaches 
infinity in the limit as can be seen by repeated application of l'H6pital's rule to /3kl in 
the form 

/3kl = ( & d P $ % n k e j d ) / 6  det p-' 
and use of equation (A 11) for the time derivatives. Thus exp [ - &/3klxk X J  approaches 
zero exponentially for fixed r + 0, while (det P-')i approaches zero only as (pi1)*. 
The ratio of these two quantities appearing in ( b )  must therefore approach zero, which 
is the desired behaviour. It should also be pointed out (Landau & Lifshitz 1969) that 
the second moments of the generalized Gaussian are related to the inverse elements 

so that requiring /3i1(0) = 0 is equivalent to saying that the probability is initially a 
point source at the origin. Furthermore, an equation for ( x k  x,) identical to (A 11) may 
be derived by multiplying (A 4) by x k  x,, integrating over all space, and utilizing the 
boundary conditions at infinity. 

In  conclusion then, solving (A 11) with /3~'(0) = 0 completes the determination of 
the fundamental solution of the convective diffusion equation for an arbitrary linear 
field. A word of caution should be injected here, however, since we have assumed that 
Pkl(t) x k x z  will always be positive-definite. Actually the field is arbitrary only inasmuch 
as the solution of the appropriate equations for &l(t) maintains this positive-definite 
character. Once this has been verified for any specific case, then the analysis here will 
provide the correct distribution. The determination of the fundamental solution for a 
general point source (not necessarily at the origin) which may be used to calculate the 
solution of (A 3) for any arbitrary initial distribution, requires some modification of 
the procedure above. 
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Appendix B. Mean squared displacements in general two-dimensional flow 
from the Langevin equation? 

If we neglect terms in the Langevin equation which are of relative order (Pt)-l  or 
less, then formal integration of the Langevin equations with the general flow (2.6) 

Differentiation of (B I)  and (B 2) gives an equation for x( t ) :  

I 1 
d-aG2x = - 8 ( t ) + - G Y ( t ) .  

P P 
This non-homogeneous equation has the solution 

1 t  
x ( t )  = lo ds X ( s )  cosh [a*G(t - s ) ]  + ds Y ( s )  sinh [a*G(t - s)], 

where x(0) = 0. With a similar initial condition on y ( t )  we find 

ds X ( s )  sinh [ahG(t - s)] + ds Y ( s )  cosh [a3G(t - s )] .  

With (B 4)  and (B 5 ) ,  equations (2.12)-(2.14) follow by appropriate averaging over the 
ensemble. 

The authors wish to acknowledge the encouragement and assistance of Professor 
S. G. Mason in whose laboratory this work was carried out, and of the Medical Research 
Council of Canada (MRC Grant MA-4012) for financial support. We also express our 
appreciation to Professor R. G. Cox and members of the Physical Chemistry Division 
a t  PPRIC for helpful discussions. 

R E F E R E N C E S  

ADELMAN, S. A. 1976 J. Chem. Phys. 64, 124. 
BEDEAUX, D. & MAZUR, P. 1974 Physica (Utrecht) A 76, 247. 
BOOTH, F. 1950 Proc. Roy. SOC. A203, 514. 
BRENNER, H. & GAYDOS, L. J. 1977 J .  Colloid Interface Sci. 58, 312. 
BRINKMAN, H. 1956 Physica (Utrecht) 22, 29. 
CHANDRASEKHAR, S. 1943 Rev. Mod. Phys. 15, 1. 
CHATWIN, P. C. 1976 J. Fluid Mech. 77, 593. 
CHATWIN, P. C. 1977 J .  Fluid Mech. 80, 33. 
CHOW, T. S. & HERMANS, J. J. 1972 J .  Chem. Phys. 56, 3150. 
ELRICK, D. E. 1962 Aust. J .  Phys. 15, 283. 
ERMAK, D. L. & MCCAMMON, J. A. 1978 J .  Chem. Phys. 69, 1352. 
FOISTER, R .  T. & HERMANS, J. J. 1977 Macromolecules 10, 1043. 

t We gratefully acknowledge the communication of these results, as well as other valuable 
comments and suggestions, from Professor J. J. Hermans. 

5-2  



132 

GIDDINGS, J. C. 1966 Sep. Sci. 1, 123. 
GILL, W. N. & SANKARASUBRAMANIAN, R. 1970 Proc. Roy. Soc. A 316, 341. 
GILL, W. N. & SANKARASUBRAMANIAN, R. 1971 Proc. Roy. SOC. A 322, 101. 
GOLDMAN, A. J., Cox, R. G. & BRENNER, H. 1967a Chem. Engng Sci. 22, 637. 
GOLDMAN, A. J., Cox, R. G. & BRENNER, H. 1967b Chem. Engng Sci. 22, 653. 
HAPPEL, J. & BRENNER, H. 

HINCH, E. J. 1975 J .  Fluid Mech. 72, 499. 
KAO, S. V., Cox, R. G. & MASON, S. G. 1977 Chem. Engng Sci. 32, 1505. 
-0, S. V., POWELL, R. L. & MASON, S. G. 1979 (to appear). 
KRAMERS, H. A. 1940 Physica (Utrecht) 7, 284. 
KRISHNAYURTEY, S. & SUBRAMANIAN, R. S. 1977 Sep. Sci. 12, 347. 
LEAL, L. G. & HINCH, E. J. 1971 J .  Fluid Mech. 46, 685. 
LIGHTHILL, M. J. 1966 J. Inst. Math. Appl. 2, 97. 
LORENTZ, H. A., 1921 Lessen over Thecwetische Natuurkunde. V. Kinetische Problemen. Leiden. 
MASON, S .  G. 1976 J. Colloid Interface Sci. 58, 275. 
MORSE, P. M. & FESHBACH, H. 1953 Methods of Theoretical Physics, p. 857. McGraw-Hill. 
SAFFMAN, P. G. 1960 J. Fluid Mech. 8, 273. 
SAFFMAN, P. G. 1976 J. Fluid Mech. 73, 593. 
TAYLOR, G. I. 1953 Proc. Roy. Soc. A 219, 186. 
VADAS, E., Cox, R. G., GOLDSMITH, H. L. & MASON, S. G. 1976 J .  Colloid Interface Sci. 57,308. 
VADAS, E., GOLDSMITW, H. L. & MASON, S. G. 1973 J. Colloid Interface Sci. 43, 630. 
VEN, T. G. M. VAN DE 1977 J .  Colloid Interface sci. 62, 352. 
VEN, T. G. M. VAN DE & MASON, s. G. 1976 J. Colloid Interface Sci. 57, 517. 
VEN, T. G. M. VAN DE & MASON, S. G. 1977 colloid & Polymer Sci. 255, 794. 
VEN, T. G. M. VAN DE, TAKAMURA, K. & MASON, S. G. 1979 (to appear). 
WANG, M. C. & UHLENBECK, G. E. 1945 Rev. Mod. Phys. 17, 323. 
ZUZOVSKY, M., PRIEL, Z. & MASON, S. G. 1979 (to appear). 

R. T .  Foister and T .  G .  M .  van de Ven 

1973 Low Reynolds Number Hydrodynamics, p. 67. Leiden: 
Nordhoff. 


